翻訳と辞書
Words near each other
・ Multiple frequency-shift keying
・ Multiple fruit
・ Multiple gamma function
・ Multiple granularity locking
・ Multiple gunshot suicide
・ Multiple hamartoma syndrome
・ Multiple hearth furnace
・ Multiple histories
・ Multiple homing
・ Multiple Independent Levels of Security
・ Multiple independently targetable reentry vehicle
・ Multiple Indicator Cluster Surveys
・ Multiple inert gas elimination technique
・ Multiple inheritance
・ Multiple inositol-polyphosphate phosphatase
Multiple integral
・ Multiple Integrated Laser Engagement System
・ Multiple isomorphous replacement
・ Multiple kernel learning
・ Multiple Kill Vehicle
・ Multiple listing service
・ Multiple Loci VNTR Analysis
・ Multiple major sports championship seasons
・ Multiple Maniacs
・ Multiple master fonts
・ Multiple Media Entertainment
・ Multiple mini interview
・ Multiple minute digitate hyperkeratosis
・ Multiple morbidities
・ Multiple myeloma


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Multiple integral : ウィキペディア英語版
Multiple integral

The multiple integral is a generalization of the definite integral to functions of more than one real variable, for example, ''f''(''x'', ''y'') or ''f''(''x'', ''y'', ''z''). Integrals of a function of two variables over a region in R2 are called double integrals, and integrals of a function of three variables over a region of R3 are called triple integrals.〔Stewart, James (2008). ''Calculus: Early Transcendentals'', 6th ed., Brooks Cole Cengage Learning. ISBN 978-0-495-01166-8〕
==Introduction==
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the ''x''-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where ''z'' = ''f''(''x'', ''y'')) and the plane which contains its domain. (The same volume can be obtained via the triple integral—the integral of a function in three variables—of the constant function ''f''(''x'', ''y'', ''z'') = 1 over the above-mentioned region between the surface and the plane.)〔 If there are more variables, a multiple integral will yield hypervolumes of multi-dimensional functions.
Multiple integration of a function in ''n'' variables: ''f''(''x''1, ''x''2, ..., ''x''''n'') over a domain ''D'' is most commonly represented by nested integral signs in the reverse order of execution (the leftmost integral sign is computed last), followed by the function and integrand arguments in proper order (the integral with respect to the rightmost argument is computed last). The domain of integration is either represented symbolically for every argument over each integral sign, or is abbreviated by a variable at the rightmost integral sign:〔Larson/Edwards (2014)/ ''Multivariable Calculus'', 10th ed., Cengage Learning. ISBN 978-1-285-08575-3 〕
: \int \cdots \int_\mathbf\;f(x_1,x_2,\ldots,x_n) \;dx_1 \!\cdots dx_n
Since the concept of an antiderivative is only defined for functions of a single real variable, the usual definition of the indefinite integral does not immediately extend to the multiple integral.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Multiple integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.